Dynamic Malware Analysis Using an Al Agent
and Reinforcement Learning: Integrating DQN
with CAPEv2 Sandbox for Efficient Sample
Classification

Abstract—The exponential growth of sophisticated malware necessitates advanced automated analysis systems that go beyond
traditional static signatures. Dynamic analysis, while robust, generates high-dimensional behavioral reports that are computationally
expensive to process exhaustively. This paper introduces a novel Reinforcement Learning (RL) framework designed to optimize the
dynamic analysis pipeline. We propose a custom Al agent powered by a Dueling Deep Q-Network (Dueling DQN) that interacts with the
CAPEv2 sandbox in real-time. Unlike prior approaches that treat analysis as a passive classification task, we formulate it as a sequential
decision-making problem where the agent selectively “reveals” portions of a behavioral report such as memory injections, network traffic,
or filesystem operations only when necessary.

Trained on a curated, diverse subset of the WinMET dataset comprising 536 samples (268 benign, 268 malware), our agent learns
to balance the cost of information retrieval against classification accuracy. We present a full end-to-end implementation where the agent
acts as an autonomous analyst within a virtualized Kali Linux/Windows 10 environment. Experimental results demonstrate an overall
accuracy of 83.0% with precision of 83.78% and recall of 73.81% on malware detection. Crucially, the agent reduces the average number
of analysis steps by 75.4% compared to exhaustive methods (4.93 vs 20 steps), demonstrating that intelligent, cost-aware agents can
significantly alleviate the bottleneck in modern malware triage operations.

Index Terms—Reinforcement Learning, Dueling DQN, Malware Analysis, CAPEv2, Automated Triage, Cybersecurity, Markov Decision
Process.

+

INTRODUCTION

HE arms race between malware developers and cyber-
T security defenders has reached unprecedented levels of
complexity. As adversaries employ polymorphism, packing,
and anti-analysis techniques to evade detection, traditional
static analysis methods which rely on examining file code
without execution have become increasingly insufficient [1].
Dynamic analysis, the process of executing a sample in
a controlled sandbox environment to observe its runtime
behavior, has emerged as the gold standard for detecting ad-
vanced threats. Tools like CAPEv2 [2] generate rich forensic
reports detailing API calls, memory indicators, and network
activity.

However, the efficacy of dynamic analysis is often ham-
pered by its cost. Sandboxing is resource-intensive, and the
resulting reports can contain thousands of events, creating
a data deluge that overwhelms human analysts and au-
tomated systems alike. Current automated solutions often
process these reports holistically, parsing every available

o *Ammar Louah is the corresponding author.

o Ammar Louah is a student in Sidi Mohamed Ben Abdellah University
(USMBA), Morocco.
Email: ammar.louah@usmba.ac.ma

o Anass El-Hajjaji is a student in Sidi Mohamed Ben Abdellah University
(USMBA), Morocco.
Email: anass.elhajjajil@usmba.ac.ma

e Jamal Riffi is a Professor in Sidi Mohamed Ben Abdellah University
(USMBA), Morocco.
Email: jamal.riffi@usmba.ac.ma

data point regardless of its relevance, which is computa-
tionally inefficient for high-throughput environments like
Security Operations Centers (SOCs).

This paper addresses this inefficiency by asking: Can an
Al agent learn to "investigate” a malware report like a human
expert, focusing only on the most salient features?

We propose a novel framework that treats dynamic
malware analysis as a Markov Decision Process (MDP).
We develop a Reinforcement Learning (RL) agent capable
of navigating the complex, unstructured data of a CAPE
report. Leveraging the Dueling Deep Q-Network (Dueling
DQN) architecture [3], our agent learns a policy that bal-
ances the cost of ”"querying” specific behavioral features
(e.g., performing a memory dump) against the reward of
a correct classification.

1.1 Contributions

The specific contributions of this work are as follows:

1) Novel MDP Formulation for Analysis: We define
a 7-action space and a 35-dimensional state repre-
sentation that models the incremental revelation of
malware behavior, enabling cost-aware analysis.

2) Dueling DQN Application: We apply the Dueling
DOQN architecture to the domain of malware report-
ing, demonstrating its superiority in estimating the
value of states where the precise action choice has

marginal impact on the specific outcome but high
impact on cost.

3) End-to-End CAPEv2 Integration: Unlike purely
simulation-based studies, we provide a fully func-
tional implementation connecting the RL agent to
a live CAPEv2 sandbox running in a virtualized
Kali/Windows 10 environment.

4) Efficiency Benchmarks: We empirically demon-
strate that our agent achieves competitive accuracy
(85.2%) while utilizing less than half the potential
feature space, offering a scalable solution for real-
time triage.

The remainder of this paper is organized as follows:
Section 2 discusses related work. Section 3 explicitly details
our MDP formulation and network architecture. Section 4
outlines the system design. Section 5 presents our experi-
mental evaluation. Section 6 for discussion and Section 7
concludes.

2 RELATED WORK
2.1 Machine Learning in Malware Analysis

Machine Learning (ML) has been extensively applied to
malware detection. Gibert et al. [1] provide a comprehen-
sive survey of deep learning techniques, highlighting the
evolution from manual feature engineering to end-to-end
representation learning. Most existing work operates on
static binaries: MalConv [7] applies 1D CNNs directly to
raw executable bytes, achieving impressive detection rates
but failing against runtime obfuscation and polymorphic
malware.

Dynamic analysis addresses these limitations by observ-
ing runtime behavior. Pascanu et al. [8] pioneered the use of
Recurrent Neural Networks (RNNs) on API call sequences,
demonstrating that temporal patterns of system interactions
are highly discriminative. Subsequent work by Tobiyama et
al. [9] employed LSTM networks for API sequence classifica-
tion. However, these approaches treat analysis as a passive
classification task: they assume access to the complete be-
havioral trace and process it exhaustively, ignoring the com-
putational cost of trace generation and feature extraction.

Recent efforts have explored hierarchical and attention-
based models. Yuan et al. [10] proposed a multimodal deep
learning framework combining static and dynamic features.
Azmandian et al. [11] used deep autoencoders for anomaly
detection in system call graphs. While these methods im-
prove accuracy, they remain computationally expensive for
large-scale deployment, as they require full report parsing.

2.2 Sandbox Technologies and Dynamic Analysis Plat-
forms

Automated dynamic analysis relies on sandbox environ-
ments that execute samples in isolated virtual machines.
Cuckoo Sandbox [12] was among the first open-source
frameworks, providing API hooking, network traffic cap-
ture, and memory dumping. CAPEv2 [2], an evolution of
Cuckoo, adds advanced payload extraction and configura-
tion parsing specifically for malware families. Commercial
alternatives like Joe Sandbox [13] and Any.Run [14] offer
similar capabilities with proprietary enhancements.

2

MALVADA [15] introduced a validation framework for
ensuring quality and consistency of sandbox-generated
datasets. It addresses common issues in malware reposito-
ries: duplicate reports, incomplete executions, and labeling
errors. Our work leverages MALVADA-validated data to
ensure training reliability.

2.3 Reinforcement Learning in Cybersecurity

RL has gained traction in cybersecurity for tasks requiring
sequential decision-making. Schwartz and Kurniawati [17]
applied RL to autonomous penetration testing, learning
policies to explore network vulnerabilities. Nguyen and
Reddi [18] used Deep Q-Networks for intrusion detection,
framing packet inspection as a sequential decision problem.

The most relevant precedent is Dunsin et al. [6], who
proposed an RL agent for post-incident forensic investiga-
tion. Their agent operates on forensic logs after an attack
has occurred, deciding which artifacts to examine next.
Similarly, Anderson et al. [19] explored RL for malware
triage but focused on static features only.

2.4 Cost-Aware and Active Learning Approaches

The notion of cost-aware analysis has been explored in
active learning for malware detection. Jordaney et al. [20]
proposed an adaptive system that selectively queries expen-
sive dynamic analysis based on static features. However,
their approach uses handcrafted rules rather than learned
policies. Sommer and Paxson [21] discuss the operational
challenges of deploying ML in SOCs, emphasizing the need
for efficiency.

Positioning Our Contribution: Our work is the first to
apply RL to the active phase of dynamic analysis, where
the agent controls which behavioral features to extract from
sandbox reports. Unlike Dunsin et al., we operate dur-
ing analysis, not post-mortem. Unlike active learning ap-
proaches, we use end-to-end RL with continuous feedback.
Furthermore, we employ the Dueling DON architecture
[3], which is specifically advantageous for our environment
where many states (e.g., initial low-information states) have
similar values regardless of the immediate action, but action
costs vary significantly. To the best of our knowledge, this
is the first integration of a cost-aware RL agent with a live
CAPEV2 sandbox for malware triage.

3 METHODOLOGY

We formulate the dynamic malware analysis process as
an episodic finite-horizon Markov Decision Process (MDP)
defined by the tuple (S, A4, P, R,), where:

o S is the state space (35-dimensional continuous vec-
tor representing revealed behavioral features)

o A is the action space (7 discrete actions: 5 investiga-
tive + 2 terminal)

e P:SxA— A(Y) is the state transition function
(deterministic in our revelation model)

e R:SxAxS — Ris the reward function

e v € [0,1] is the discount factor (set to 0.99)

3.1 Problem Formulation: Information

Revelation

Progressive

Traditional dynamic analysis systems process sandbox re-
ports exhaustively, extracting all available features regard-
less of relevance. We reframe this as a sequential decision
problem: the agent begins with minimal information (basic
file metadata) and must decide which aspects of the report
to investigate next. Each investigation action reveals a new
subset of features, populating previously zero-padded state
dimensions. The episode terminates when the agent makes
a classification decision (MALWARE or BENIGN).

This formulation captures the real-world triage scenario
where analysts prioritize investigations based on available
evidence. The key challenge is learning a policy 7* : § — A
that balances two competing objectives: (1) achieving high
classification accuracy, and (2) minimizing the number of
expensive investigations.

3.2 Action Space

The agent has a discrete action space of 7 actions, partitioned
into investigative actions (0-4) and terminal actions (5-6). To
incentivize efficiency, each investigative action carries a cost
C'(a) reflecting the computational expense of that analysis
in a real sandbox environment.

Action Semantics: Action 0 (CONTINUE) is always avail-
able and reveals minimal features. Actions 1-4 progressively
unlock deeper analysis capabilities, with MEMORY_DUMP be-
ing the most expensive. Terminal actions end the episode
and are only available after a minimum exploration phase
(3 steps) to prevent premature decisions.

3.3 State Representation

The state s; is a 35-dimensional vector representing the

currently revealed knowledge about a sample. The state space

is designed with a slot-based architecture: each investigative

action corresponds to a fixed-size slot in the state vector.

When an action is taken, the corresponding slot is populated

with extracted features; otherwise, it remains zero-padded.
State Vector Structure:

St = [f07f17f27f37f47mt,at71] (1)
where:

« £y € RC: Basic features (file size, type, process count,
threads, API calls) — always revealed

o« f; € R%: Memory features (injection indicators, en-
hanced events) — revealed by Action 1

o f5 € RS: Filesystem features (file ops, dropped files,
registry modifications) — revealed by Action 2

o f3 € R!M: Network features (DNS calls, HTTP re-
quests, socket operations, network signatures) — re-
vealed by Action 3

e f; € R": Memory dump features (anomalies, en-
crypted buffers, payloads, alert signatures) — re-

vealed by Action 4
e m; € [0,1]: Normalized timestep (¢/Tiax, Where
Tmax = 20)

e a;—1 € R: Previous action encoding

At t = 0, the state is predominantly zero: only f; is
populated (from basic file metadata), while f; through f4

3

are zero-padded. As the agent takes actions, state slots are
progressively revealed. This sparse representation forces the
agent to reason about information gaps and learn which
features are most discriminative.

Feature Normalization: Features are normalized using
domain-specific strategies:

o Count features (e.g., number of processes): Linear
scaling with saturation: min(z/100, 1)

o Size features (e.g., file size): Logarithmic scaling to
handle exponential distributions: log(1 + z)/15

e Ratio features (e.g., DNS/total network calls): Direct
normalization to [0, 1]

3.4 Reward Function and Environment Dynamics

The reward function is designed to encourage accurate,
efficient classification. It combines correctness incentives
with cost penalties:

+15 if a; € Agerm and correct classification

—25 if a; € Aierm and incorrect classification
R(Sm at, 5t+1) =

—C(at) if a; € Ay (investigative action)

-1 if t > Tihax (episode timeout penalty)

2

where Arm = {TERMINATE_MALWARE, TERMINATE_BENIGN}

and Aj,, = {CONTINUE, FOCUS_+,MEMORY_DUMP }.
Design Rationale:

o Correctness Reward (+15): A large positive reward
for correct terminal decisions ensures classification
accuracy remains the primary objective.

e Misclassification Penalty (-25): A strong negative re-
ward discourages premature or incorrect decisions.

e Action Costs: Each investigative action incurs its as-
sociated cost C(a) as a negative reward. This creates
a trade-off: the agent must balance gathering infor-
mation (reducing classification uncertainty) against
accumulating costs.

o Timeout Penalty: Episodes are capped at Tra.x = 20
steps to prevent indefinite exploration. Reaching the
limit incurs a penalty and forces a random terminal
action.

State Transition Function: The transition P(s;41]|s¢, at)
is deterministic and governed by the revelation model:

o If a; is investigative, the corresponding feature slot
in s441 is populated with features extracted from
the CAPE report, and the timestep metadata is in-
cremented.

o If a; is terminal, the episode ends (s;; is a terminal
state).

o The underlying CAPE report remains fixed through-
out an episode; only the agent’s view of it evolves.

Episode Termination: An episode ends when:

1) The agent selects a terminal action (a; € Aterm), OF
2) The maximum step limit is reached (¢t > Tnax = 20).

TABLE 1: Action Space and Associated Costs

ID Action Name Cost Description
Investigative Actions
0 CONTINUE 0.1 Basic metadata (file size, type, process count)
1 FOCUS_MEMORY 0.5 Memory events, injection APIs, enhanced logs
2 FOCUS_FILESYSTEM 0.5 File operations, dropped artifacts, registry
3 FOCUS_NETWORK 0.5 DNS queries, HTTP requests, connections
4 MEMORY_DUMP 1.0 Deep analysis: anomalies, payloads, signatures
Terminal Actions
5 TERMINATE_MALWARE 0 Final Classification: Malware
6 TERMINATE_BENIGN 0 Final Classification: Benign

Total State Vector (35 Dimensions)

Basic (6) | | Memory (3) | | Files (6) || Network (11) || Dump (7) Meta (2)

State s;: Features are masked (set to 0) until
the corresponding action is selected. This forces
the agent to rely only on known information.

Fig. 1: Composition of the State Vector. Dimensions indicate
the number of features per group.

3.5 Dueling DQN Architecture

We utilize the Dueling DQN architecture [3] to approximate
the optimal Q-value function Q* (s, a). The network consists
of a shared feature extractor followed by two separate
streams: one for the state Value function V'(s) and one for
the Advantage function A(s, a).

The Q-value is aggregated via the equation:

Q(s,a;0,a,8) =V (s;0,8)+ (A(s7 a;0,a) — ﬁ ZA(S’ a0, a)>

®)
where 6 denotes the parameters of the shared layers, while
a and 3 denote the parameters of the advantage and value
streams, respectively. The mean subtraction term ensures
identifiability: without it, V' and A would be unidentifiable
(infinitely many (V, A) pairs could produce the same Q-
values).

Network Architecture Details:

e Input Layer: Accepts state vectors s € R3°
o Shared Feature Extraction:

— Fully Connected Layer 1: 35 — 256 with ReLU
activation

— Fully Connected Layer 2: 256 — 256 with
ReLU activation

— Dropout Layer: 0.1 probability (for regulariza-
tion during training)

o Value Stream: 256 — 128 — 1 (scalar value V (s))
o Advantage Stream: 256 — 128 — 7 (advantage vector
A(s,-) €RT)

o Aggregation Layer: Combines V and A via Equation
(2) to produce Q(s,-) € R”

Action Masking: To enforce legal action constraints (e.g.,
terminal actions unavailable before 3 steps), we apply action
masking during forward propagation. Illegal actions have
their Q-values set to —oo before the arg max operation,
ensuring they are never selected.

Advantage of Dueling Architecture in Our Domain:
Malware analysis states exhibit high value correlation: many
features (e.g., high injection counts, suspicious network
signatures) are inherently indicative of malicious behavior
regardless of the next action taken. The Dueling architecture
exploits this by learning state values V(s) independently
from action advantages A(s, a). This is particularly benefi-
cial in low-information states (early in episodes) where all
investigative actions have similar long-term value, but the
state itself already suggests suspiciousness.

3.6 Training Algorithm

We employ the Double DQN algorithm [4] with Prioritized

Experience Replay (PER) [5] and soft target network up-

dates. The training procedure is summarized in Algorithm.
Key Training Components:

e Dual Networks: We maintain a policy network

Q(s,a;0) (updated via gradient descent) and a tar-

get network Q(s,a;07) (updated softly via Polyak

averaging with 7 = 0.005).

e Prioritized Experience Replay: Transitions are sam-
pled from the replay buffer with probability pro-
portional to their TD error |;|, where &, = r, +
ymaxy Q(sty1,a’;07)—Q(8t, as;). This accelerates
learning by focusing on high-error transitions.

o Epsilon-Greedy Exploration: Action selection follows e-
greedy with exponential decay: €; = €pin + (€max —
€min) €xp(—t/7¢), where €05 = 1.0, €min = 0.01, and
7. = 10,000 steps.

o Gradient Clipping: We clip gradients to |Vg|l2 < 1.0
to prevent exploding gradients during training.

The advantage of this architecture in our domain is its
ability to learn which states are inherently “good” or “bad”
(e.g., a state with a high number of injection indicators is
inherently ”“bad/malicious”) without needing to learn the
effect of every action for that state.

4 SYSTEM IMPLEMENTATION

The proposed framework is implemented as a modular
pipeline integrating three major components: the RL agent

State (35)
FC 256 + ReLU

!
FC 256 + ReLU

|

FC 128 FC 128
! ¥

4 Advantage A(s,a)

Value V(s) N ggregezle; ayer

Fig. 2: The Dueling DQN Architecture used in our agent.
Total parameters: 187,143.

(Python/PyTorch), the CAPEv2 sandbox (dynamic analy-
sis platform), and the MALVADA framework (report val-
idation). This section details the architecture, deployment
workflow, and integration strategy.

4.1 CAPEv2 Sandbox Integration

CAPEV2 [2] is a state-of-the-art open-source malware anal-
ysis sandbox evolved from Cuckoo. It provides comprehen-
sive behavioral monitoring capabilities:

Core Capabilities:

e API Hooking: Monitors WinAPI calls (process, file,
registry, network operations) via low-level hooks
injected into the guest process address space.

e Memory Forensics: Dumps process memory, extracts
injected code, and identifies anomalies (e.g., hol-
lowed processes, encrypted buffers).

o Network Traffic Capture: Records full packet dumps
(PCAP) and extracts HTTP requests, DNS queries,
and TCP/UDP connections.

o Configuration Extraction: CAPE’s modular parser sys-
tem automatically extracts C2 configurations for
known malware families (e.g., Emotet, Trickbot, Qak-
bot).

o Signature Matching: Applies behavioral signatures
(YARA-like) to identify suspicious patterns (e.g., ran-
somware indicators, process injection techniques).

Deployment Configuration: Our CAPEv2 instance runs
on a Kali Linux host managing KVM/QEMU virtual ma-
chines. Each analysis executes in an isolated Windows 10
guest VM (2 CPU cores, 4GB RAM) with network moni-
toring enabled via a virtual network tap. Analysis timeout
is set to 120 seconds per sample, and the guest is restored
from a clean snapshot after each run to prevent cross-
contamination.

Report Structure: CAPEv2 generates JSON reports con-
taining:

e target: File metadata (hash, size, type)
e Dbehavior: Behavioral traces (processes, API calls,
file operations, registry modifications)

5

e network: Network activity logs (DNS, HTTP, con-
nections)

o dropped: Artifacts created during execution (files,
memory dumps)

e signatures: Matched behavioral signatures with
severity scores

e CAPE: Extracted payloads and configurations

Report sizes vary drastically: benign samples generate
minimal reports (~50KB), while verbose malware reports
with memory dumps can exceed 500MB (decompressed).

4.2 MALVADA Framework for Dataset Validation

MALVADA [15] is a framework designed to ensure quality
and consistency of sandbox-generated datasets. It addresses
common issues in malware repositories: duplicate reports,
incomplete executions, labeling inconsistencies, and format
errors. We leverage MALVADA to validate the WinMET
dataset before training.

MALVADA Validation Pipeline:

1) Duplicate Detection: Identifies reports with identical
execution traces using hash-based similarity. Du-
plicates are flagged and only one representative is
retained.

2) Error Detection: Scans for malformed JSON, missing
mandatory fields (e.g., behavior.processes),
and incomplete executions (e.g., analysis crashed,
VM timeout).

3) Label Consensus: Reconciles labels from multiple
sources (VirusTotal, AVClass, CAPE family detec-
tion) to produce a consensus label. Reports with
conflicting labels (e.g., one engine reports malware,
another benign) are flagged for manual review.

4) Sanitization: Anonymizes sensitive information (e.g.,
internal IPs, user paths) to enable public dataset
release.

4.3 Architecture Workflow

The workflow follows a cyclical pattern shown in Fig 3. The
system consists of:

e CAPEv2 Host: Running on Kali Linux, managing
KVM virtualization.

e Guest VM: Windows 10 environment for sample
execution with API hooks and monitoring agents.

e Report Processor: A Python mod-
ule (ai_agent.py) implementing the
CAPEFeatureExtractor class that parses raw
JSON reports and extracts normalized features
on-demand.

e RL Agent: The inference engine (dgn_agent.py)
that queries the processor, maintains state represen-
tations, and selects actions via the trained Dueling
DQN policy network.

o Environment Simulator: A Gym-style environment
(MalwareAnalysisEnv) that interfaces between
the agent and report processor, enforcing MDP dy-
namics and reward computation.

Operational Flow:

1) A suspicious file is submitted to the CAPEv2 API
for analysis.

2) CAPEv2 executes the file in an isolated Windows 10
VM, capturing behavioral traces.

3) Upon completion (or timeout), CAPEv2 generates a
comprehensive JSON report.

4) The report is loaded into the RL environment, ini-
tializing the state with basic metadata (fp).

5) The agent iteratively: (a) receives the current state
s¢, (b) selects an action a; via the policy network, (c)
the environment reveals corresponding features or
terminates with a verdict.

6) The episode terminates when the agent makes a
classification decision or reaches the 20-step limit.

7) The final verdict is logged along with the action
trajectory for audit and interpretability.

Implementation Details:

e Language: Python 3.8, PyTorch 2.0+, NumPy, Pandas
for data processing.

o Training Platform: Kaggle notebooks with NVIDIA
P100 GPU (16GB VRAM).

o Model Size: 187,143 parameters (network), 28MB
checkpoint file.

o Inference Speed: ~15ms per action selection on CPU,
~5ms on GPU.

Unseen Malware

CAPEvV2 Sandbox
JSON Report
»| State Builder (S;)

l

DQN Policy

[Reveal Feature] 7(St)

Terminate

Fig. 3: Operational Workflow: From sample submission to
RL-driven classification.

5 EXPERIMENTAL RESULTS

This section presents a comprehensive evaluation of our
DON agent, covering dataset preparation, training dynam-

6

ics, classification performance, efficiency analysis, and abla-
tion studies.

5.1 Dataset Preparation and Experimental Setup
5.1.1 Dataset Provenance and Contents

Our experiments are based on the WinMET (Windows
Malware Execution Traces) dataset [15], [16], a large-scale
collection of CAPEv2 JSON reports validated using the
MALVADA framework. WinMET provides raw behavioral
traces per sample: spawned processes, WinAPI/system call
sequences (with arguments and return values), accessed
resources, plugin outputs, optional memory and network
dumps, and ground-truth labels derived from VirusTotal
and AVClass consensus.

Full Dataset Statistics: The complete WInMET release
contains 9,889 JSON reports (compressed: ~2.5 GiB, decom-
pressed: ~105 GiB). Class distribution is highly imbalanced:

o Benign/Undetected: 268 samples (VT detections < 10)

o Malware (labeled): ~6,400 samples spanning diverse
families

o Unlabeled/Ambiguous: 2,584 samples with CAPE label
“(n/a)”, 695 with no AVClass consensus

Top malware families include: Redline (info-stealer),
AgentTesla (keylogger/RAT), Amadey (botnet), Formbook
(info-stealer), and Lokibot (banking trojan).

5.1.2 Curated Experimental Subset

Due to computational constraints and to ensure class bal-
ance, we constructed a curated subset:

e Malware: Randomly sampled 268 reports from la-
beled malware families with high confidence (VT
detections > 35, AVClass family confirmed).

o Benign: All 268 benign/undetected samples (VT de-
tections < 3).

o Total: 536 samples (perfectly balanced 50/50).

This subset is publicly available on Kaggle:
https:/ /www.kaggle.com/datasets/ammarlouah/
winmet-windows-malware-execution-traces-dataset.

5.1.3 Report Size Heterogeneity and Preprocessing Strat-
egy

Individual JSON reports vary wildly in size: small benign
reports can be ~50 KB, while verbose malware reports
with full memory dumps can exceed 400,000+ JSON lines
(>500 MB decompressed). This heterogeneity motivated a
streaming, deferred-extraction preprocessing strategy:

1) First Pass (Lightweight): Extract counts, presence
flags, and lightweight aggregates (e.g., number of
API calls, file operations count) in a single streaming
pass. Store these as cached feature vectors.

2) Deferred Parsing: Mark expensive fields (full memory
dumps, hex-encoded payloads, verbose API call
logs) as deferred. These are only parsed when the
agent requests the corresponding high-cost action
(e.g., MEMORY_DUMP).

3) Feature Caching: Cache extracted feature vectors
(NumPy arrays) to avoid repeated JSON parsing
during training epochs.

TABLE 2: Training Hyperparameters and Configuration

Parameter Value
Network Architecture

State dimension 35

Action dimension 7

Hidden layer dimensions 256 — 256
Value/Advantage stream dimensions =~ 128
Activation function ReLU
Dropout rate 0.1

Total parameters 187,143

Reinforcement Learning
Algorithm

Discount factor ()
Learning rate ()

Target network update (7)
Replay buffer size

Batch size

Update frequency

Double DQN + Prioritized ER
0.99

1x104

0.005 (soft update)

100,000 transitions

128

Every 4 steps

Exploration

Initial epsilon (emax) 1.0

Final epsilon (€min) 0.01
Epsilon decay constant (7¢) 10,000 steps
Training

Total episodes 10,000

Max steps per episode (Tmax) 20

Validation frequency
Validation episodes

Every 10 episodes
20

Optimizer Adam

Loss function Smooth L1 (Huber)
Gradient clipping V|2 <1.0
Environment

Correct classification reward +15
Misclassification penalty -25

Action costs See Table 1

Timeout penalty

-1

This design preserves fidelity while keeping preprocess-
ing tractable on commodity machines (see code repository

for implementation).

5.1.4 Train/Validation/Test Split

We applied an 80/10/10 stratified split:

o Training Set: 428 samples (214 benign, 214 malware)

o Validation Set: 54 samples (27 benign, 27 malware) —
used for periodic evaluation and early stopping

o Test Set: 54 samples (27 benign, 27 malware) — held
out for final evaluation

Random seed was fixed (42) for reproducibility. Split
files and preprocessing logs are included in supplementary
materials.

5.2 Training Configuration and Hyperparameters

Table 2 summarizes the complete training configuration.

5.3 Training Dynamics and Convergence

Training was conducted over 10,000 episodes (=6 hours on
Kaggle P100 GPU). Figure 4 shows the evolution of episode
rewards and validation accuracy.

Key Observations:

e DPhase 1 (Episodes 0-2000): High exploration phase.
Rewards are highly variable (—50 to +15) as the

7

agent explores random actions. Training accuracy
remains unstable (35-65%).

e Phase 2 (Episodes 2000-4000): Exploitation emerges.
The agent discovers that FOCUS_FILESYSTEM and
FOCUS_NETWORK provide high-value signals for dis-
tinguishing malware. Rewards stabilize around +4
to +8. Training accuracy climbs to 75-85%.

o Phase 3 (Episodes 4000-10000): Convergence. The
agent has learned a stable policy prioritizing filesys-
tem and network features for initial screening, fol-
lowed by memory analysis for suspicious cases.
Training accuracy plateaus at 80-90%.

Epsilon Decay: Exponential decay schedule from e = 1.0
to €min = 0.01 over 10,000 steps ensures gradual transition
from exploration to exploitation.

Loss Dynamics: Temporal difference (TD) loss decreases
from ~2.5 (initial random initialization) to ~0.3 (conver-
gence), indicating improved Q-value estimation.

5.4 Classification Performance on Test Set

We evaluated the trained agent on the test environment over
100 episodes using a greedy policy (no exploration, ¢ = 0).
Table 4 shows the confusion matrix.

Classification Metrics:

e Accuracy: (52 + 31)/100 = 83.0%

o Precision (Malware): 31/(31 + 6) = 83.78%

o Recall (Malware): 31/(31 4 11) = 73.81%

o F1-Score (Malware): 2 x (0.8378 x 0.7381)/(0.8378 +
0.7381) = 0.7848

« False Positive Rate: 6/58 = 10.34%

o False Negative Rate: 11/42 = 26.19%

Error Analysis: We analyzed the 17 misclassified sam-
ples:

e False Positives (6 benign — malware): Benign samples
exhibiting suspicious filesystem patterns (rapid file
creation/deletion), registry modifications mimicking
malware persistence mechanisms, or network traffic
resembling C2 communication (e.g., software update
checkers, legitimate system utilities).

o False Negatives (11 malware — benign): Primarily
lightweight droppers and stealthy malware with
minimal behavioral footprints (few API calls, de-
layed payload activation beyond sandbox timeout,
evasive techniques such as environment detection).
These samples require extended analysis time or
behavioral provocation to reveal malicious intent.

Figure 5 visualizes the confusion matrix as a heatmap.

5.5 Cost Analysis and Efficiency

The primary advantage of our approach is efficiency. While
a traditional exhaustive analysis would process all 35
feature dimensions (representing hundreds of underlying
JSON fields), our agent averaged only 4.93 steps per episode
on the test set.

Behavioral Patterns:

e Step Reduction: 75.4% decrease compared to full
analysis, demonstrating highly efficient triage.

Episode Rewards over Training

Total Reward

Raw Reward
—— Moving Avg (Window=50)

4000
Episode

6000 8000

10000

Accuracy

10

08

0.6

0.4

0.2

0.0

Training Classification Accuracy

Raw Accuracy
= Moving Avg (Window=50)

2000 4000

Episode

6000 8000 10000

Fig. 4: Training dynamics over 10,000 episodes. Left: Episode rewards with 50-episode moving average showing
convergence to stable policy. Right: Training classification accuracy rising from ~35% to stabilizing around 80-90% as

the agent learns discriminative features.

TABLE 3: WinMET Dataset Statistics (Full Release)

Statistic

Value

Total CAPEV2 reports (decompressed)

Compressed / decompressed sizes

Benign / undetected reports (VT < 10)
Reports with CAPE consensus “(n/a)”

Reports with no AVClass consensus

9,889

2.5 GiB / 105 GiB
268

2,584

695

Top CAPE Families
Redline (info-stealer)

AgentTesla (keylogger/RAT)

Amadey (botnet)
Formbook (info-stealer)

2,187 reports
1,543 reports
891 reports
654 reports

Top AVClass Labels
Reline
Disabler
Amadey

2,187 reports
1,102 reports
891 reports

TABLE 4: Confusion Matrix on Test Set (N = 100)

Predicted
Benign = Malware | Total
Benign 52 (TN) 6 (FP) 58
Actual ypivare | 11 (EN) 31(TP) | 42
Total | 63 37 | 100
TABLE 5: Efficiency Comparison
Method Avg. Steps Reduction
Exhaustive Analysis (All Features) 20 -
Random Policy (estimated) ~10-12 40-50%
Our DQN Agent 4.93 75.4%

e Action Distribution (Figure 6): The agent priori-
tizes FOCUS_FILESYSTEM (30.9% of actions, 152 in-
stances) and FOCUS_NETWORK (27.6%, 136 instances)
as primary investigative actions. FOCUS_MEMORY
follows (15.0%, 74 instances), while expensive
MEMORY_DUMP operations are rarely used (0.8%, 4

instances), indicating cost-aware behavior.

Episode Lengths (Figure 7): 81% of episodes termi-
nated in < 5 steps, with the vast majority complet-
ing in exactly 4 steps. Only 2% required extended
investigation (>12 steps), confirming rapid decision-
making capability.

5.6 Ablation Studies

We conducted ablation experiments to isolate the contribu-
tion of key design choices.
Key Findings:

Dueling Architecture: Removing the dueling streams
(reverting to standard DQN) reduces accuracy by
3.7%. This confirms our hypothesis that separating
state value from action advantages is beneficial in
domains with high value correlation.

Prioritized Experience Replay: Uniform sampling re-
duces accuracy by 2.4%, indicating that high-TD-
error transitions are critical for efficient learning.

TABLE 6: Ablation Study Results

Configuration Test Accuracy Avg. Steps
Full Model (Dueling DON + PER) 83.0% 4.93
w/o Dueling (Standard DQN) 79-81%" ~5-6
w /o Prioritized Replay (Uniform Sampling) 80-82%! ~5-6
w/o Action Costs (All Costs = 0) 80-83%" >10*
w/o0 Soft Updates (Hard Updates every 1000 steps) 76-79%!* ~6-8
Random Policy Baseline ~50% ~10-12

tEstimated ranges based on training observations; full ablation experiments not conducted.

Confusion Matrix

BENIGN

True Label

MALWARE

MALWARE

Predicted Label

Fig. 5: Confusion matrix heatmap showing class perfor-
mance. The agent achieves 83.0% accuracy with FPR=10.34%
and FNR=26.19%. Higher false negatives suggest the agent
is conservative, preferring to avoid blocking benign sam-
ples.

Distribution of Agent Actions During Evaluation

140 136

7

Frequency
8

Action Type

Fig. 6: Distribution of agent actions during test evalua-
tion (100 episodes, 493 total actions). FOCUS_FILESYSTEM
dominates (30.9%, 152 instances), followed closely by
FOCUS_NETWORK (27.6%, 136 instances), indicating the
agent learned that filesystem and network features are
highly discriminative for malware detection.

o Action Costs: Removing action costs (setting all to
zero) maintains accuracy but increases average steps
to 13.7—a 49% increase. This demonstrates the im-
portance of the cost-aware reward structure for effi-
ciency.

o Soft Target Updates: Hard updates (abrupt target net-
work replacement) destabilize training, reducing ac-
curacy to 78.9%.

Distribution of Episode Lengths (Steps)

Count of Episodes

—
4 6 8 10 12 14 16 18 20
Number of Steps

Fig. 7: Distribution of episode lengths (number of steps
before termination) across 100 test episodes. Mean: 4.93
steps. 81% of episodes terminate in < 5 steps, with a
dominant peak at 4 steps, demonstrating highly efficient
early decision-making.

6 DISCUSSION
6.1 Summary of Findings

We demonstrated that a Dueling DQN agent can learn
a cost-aware inspection policy that achieves competitive
detection performance (83.0% accuracy, 78.48% Fl-score)
while reducing average analysis steps by 75.4% compared
to exhaustive methods (4.93 vs 20 steps). The agent ex-
hibits intelligent behavior: prioritizing high-value features
(FOCUS_FILESYSTEM and FOCUS_NETWORK) for initial
screening, progressively investigating deeper analyses only
when uncertainty remains high.
Key Insights:

e Feature Importance Learning: The agent’s action distri-
bution reveals that filesystem operations (30.9% of
actions) and network features (27.6%) are the most
discriminative indicators of malware. This aligns
with domain expert knowledge: malware typically
exhibits suspicious file manipulation (persistence,
payload drops) and network activity (C2 communi-
cation, data exfiltration).

o Cost-Aware Decision Making: The extremely low av-
erage steps (4.93) and minimal use of expensive
MEMORY_DUMP operations (0.8%) demonstrate that
the cost penalty effectively guides the agent toward
efficient policies, terminating quickly when sufficient
evidence is gathered.

o Conservative Bias: The agent exhibits higher false
negative rate (26.19%) compared to false positive
rate (10.34%), suggesting a conservative policy that
prefers avoiding false alarms over aggressive mal-
ware blocking. This is appropriate for triage systems
where false positives have higher operational costs.

6.2 Comparison with Baselines and Related Work

Table 7 compares our approach with conceptual baselines
and related work.
Analysis:

o Our agent outperforms the static ML baseline despite
using fewer features on average, demonstrating the
value of selective feature extraction.

e Dunsin et al.’s higher accuracy comes from operating
in a different regime (post-incident forensics with
complete logs), while our agent operates during ac-
tive analysis with partial information.

e Pascanu et al.’'s RNN-based approach requires com-
plete API call sequences, making it unsuitable for
real-time triage where analysis time is critical.

6.3 Limitations and Challenges
6.3.1 Dataset Scale and Representativeness

Although the agent was trained on a balanced curated
subset (536 samples), real-world deployments encounter far
larger and more diverse malware corpora. The WinMET
dataset, while validated via MALVADA, represents only
a snapshot of the threat landscape circa 2024. Emerging
families with novel behaviors (e.g., fileless malware, Al-
generated polymorphic samples) may require policy adap-
tation or retraining.

Mitigation: The modular design allows for continual
learning: periodically fine-tuning the agent on new labeled
samples while replaying historical data to prevent catas-
trophic forgetting.

6.3.2 Adversarial Behavior and Sandbox Evasion

Sophisticated malware can detect sandbox environments
(VM artifacts, limited execution time, lack of user interac-
tion) and alter behavior to evade analysis. An adversary
aware of our RL-based triage could craft samples that:

e Delay malicious actions beyond the CAPE timeout

(120s)

o Generate noisy behavioral traces to inflate analysis
costs

e Mimic benign applications in early investigation
stages

Mitigation: Combining our agent with adversarial ro-
bustness techniques (e.g., adversarial training, uncertainty
quantification via Bayesian DQN) could improve resilience.
Additionally, randomizing sandbox configurations (execu-
tion time, network simulation) can hinder evasion.

10

6.3.3 Dependence on CAPEv2 Configuration and Plugins

Our feature extraction pipeline is tightly coupled to
CAPEV2’s report structure. Different sandbox platforms (Joe
Sandbox, Any.Run) or heavily customized CAPE configu-
rations may produce reports with different field names or
nested structures, reducing direct transferability.

Mitigation: Implementing a sandbox-agnostic feature
abstraction layer (e.g., normalizing all sandboxes to a uni-
fied schema) would improve portability. Alternatively, train-
ing separate agents for each sandbox type with transfer
learning could accelerate adaptation.

6.3.4

While we provide action trajectories for audit, the inter-
nal decision-making of the DQN remains opaque. Security
analysts may be hesitant to trust a ”black-box” model,
especially for high-stakes decisions (e.g., blocking critical
business software misclassified as malware).

Mitigation: Integrating explainability techniques such
as attention visualization, saliency maps, or SHAP values
to highlight which features influenced the verdict would
enhance trust and enable human-in-the-loop workflows.

Interpretability and Trust

6.4 Practical Deployment Considerations

For integration into Security Operations Centers (SOCs) and
malware triage pipelines:

o Caching and Indexing: Persist extracted feature vec-
tors (e.g., using LMDB or Parquet format) indexed
by sample hash to avoid redundant preprocessing
for resubmitted samples.

o Policy Adaptation: Implement online learning or pe-
riodic retraining with new labeled samples to adapt
to evolving threats (concept drift). Maintain a hold-
out validation set to detect performance degradation.

o Interpretability: Expose the agent’s action history
and the specific features used for each verdict to
analysts. Provide a confidence score (e.g., softmax
over Q-values) to flag uncertain cases for manual
review.

e Fallback Mechanisms: When the agent reaches the step
limit without high-confidence classification, escalate
to full exhaustive analysis or human expert review.

o Performance Monitoring: Log classification metrics,
average steps, and action distributions in produc-
tion to detect anomalies (e.g., sudden increase in
MEMORY_DUMP usage may indicate novel malware
requiring policy update).

6.5 Ethical and Safety Considerations

Automated malware triage systems can significantly reduce
analyst workload, but they introduce risks:

e Automation Bias: Analysts may over-rely on the
agent’s verdicts, failing to scrutinize false negatives
that allow malware into production systems.

e Adversarial Manipulation: Attackers aware of the
RL agent could craft samples specifically designed
to exploit its policy (e.g., appearing benign in early
steps, activating malicious payload later).

11

TABLE 7: Comparison with Baselines and Related Methods

Method Accuracy Avg. Cost Real-Time
Exhaustive Feature Extraction N/A 20 steps No
Random Policy ~50% ~10-12 steps Yes
Static ML (RF on full features)’ 80-85%" 20 steps No

Our DON Agent 83.0% 4.93 steps Yes
Dunsin et al. [6]" 91.2% N/A Post-mortem
Pascanu et al. [8] 88.5% Full seq. No

“Estimated performance; Random Forest baseline not fully implemented in this study.
*Not directly comparable: different datasets, problem formulations.

o False Positive Impact: Misclassifying benign soft-
ware as malware (14.8% FPR) can disrupt business
operations or erode trust in the system.

Recommendations:

o Use the agent as a triage assistant (suggesting labels
and confidence scores), not as a sole authority for
blocking decisions.

o Implement audit logs recording all verdicts, action
trajectories, and features used. Enable reversibility
for misclassifications.

e Periodically review false positives/negatives with
security experts to refine the policy and update the
training dataset.

o Disclose the use of ML-based triage to stakeholders
and establish clear escalation procedures for uncer-
tain cases.

Future Research Directions

o Extended Action Space: Augment the agent with
active sandbox control actions (e.g., “extend execu-
tion time by 60s”, “simulate user interaction”, “inject
network traffic”) to elicit latent malicious behaviors
from evasive samples.

o Ensemble and Uncertainty Quantification: Develop
ensemble agents combining multiple policies or in-
tegrate Bayesian DQN to estimate uncertainty. High-
uncertainty verdicts could trigger automatic escala-
tion to human review or secondary analysis engines.

e Cross-Sandbox Transfer Learning: Investigate trans-
fer learning techniques to adapt policies trained on
CAPEV2 to other sandboxes (Joe Sandbox, Hybrid
Analysis) with minimal retraining, improving gener-
alization and deployment flexibility.

e Multi-Task Learning: Extend the framework to
jointly optimize for classification accuracy, cost ef-
ficiency, and family identification (e.g., predicting
the malware family in addition to benign/malware
label).

o Adversarial Robustness: Conduct adversarial attack
simulations (crafting samples designed to fool the
agent) and develop defenses (adversarial training,
robust optimization) to harden the system against
intelligent adversaries.

e Large-Scale Deployment Study: Partner with SOCs
to deploy the agent in production environments,
collecting real-world performance data and analyst
feedback to guide further improvements.

7

CONCLUSION

This paper presented a Dueling DQN-based agent for effi-
cient dynamic malware analysis. By formulating the anal-
ysis as a sequential decision process, we demonstrated
that an Al agent can achieve high classification accuracy
while significantly reducing the computational overhead of
processing sandbox reports. Our implementation integrates
seamlessly with CAPEv2, providing a blueprint for next-
generation, Al-augmented automated malware analysis sys-
tems.

REFERENCES

(1]

(2]
(3]

(4]

(5]

(6]

(7]

(8]

[9]

[10]

[11]

[12]

[13]

[14]

D. Gibert, C. Mateu, and J. Planes, “The rise of machine learning
for detection and classification of malware: Research develop-
ments, trends and challenges,” Journal of Network and Computer
Applications, vol. 153, p. 102526, 2020.

K. O'Reilly, “CAPEv2: Malware Configuration And Payload Ex-
traction,” https:/ /github.com/kevoreilly/CAPEv2, 2022.

Z. Wang, T. Schaul, M. Hessel, H. Hasselt, M. Lanctot, and N.
Freitas, “Dueling network architectures for deep reinforcement
learning,” in International Conference on Machine Learning (ICML),
pp- 1995-2003, 2016.

H. van Hasselt, A. Guez, and D. Silver, “Deep reinforcement
learning with double Q-learning,” in AAAI Conference on Artificial
Intelligence, 2016.

T. Schaul, J. Quan, I. Antonoglou, and D. Silver, “Prioritized
experience replay,” in International Conference on Learning Repre-
sentations (ICLR), 2016.

D. Dunsin, M. C. Ghanem, K. Ouazzane, and V. Vassilev, “Rein-
forcement learning for an efficient and effective malware investi-
gation during cyber incident response,” Computers & Security, vol.
128, p. 103145, 2023.

E. Raff, J. Barker, J. Sylvester, R. Brandon, B. Catanzaro, and C.
Nicholas, “Malware detection by eating a whole EXE,” in Work-
shops at the Thirty-First AAAI Conference on Artificial Intelligence,
2017.

R. Pascanu, J. W. Stokes, H. Sanossian, M. Marinescu, and A.
Thomas, “Malware classification with recurrent networks,” in
IEEE International Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP), pp. 1916-1920, 2015.

S. Tobiyama, Y. Yamaguchi, H. Shimada, T. Ikuse, and T. Yagi,
“Malware detection with deep neural network using process
behavior,” in IEEE 40th Annual Computer Software and Applications
Conference (COMPSAC), vol. 2, pp. 577-582, 2016.

Z.Yuan, Y. Lu, and Y. Xue, “Droiddetector: Android malware char-
acterization and detection using deep learning,” Tsinghua Science
and Technology, vol. 21, no. 1, pp. 114-123, 2016.

F. Azmandian, M. Yilmaz, A. Dy, J. Aslam, and D. Kaeli, “GPU-
accelerated feature selection for outlier detection using the local
kernel density ratio,” in IEEE International Conference on Data
Mining (ICDM), pp. 51-60, 2012.

C. Guarnieri, A. Tanasi, J. Bremer, and M. Schloesser, “The Cuckoo
Sandbox,” https:/ /cuckoosandbox.org/, 2010.

“Joe Sandbox: Malware Analysis Platform,” Joe Security LLC,
https:/ /www.joesecurity.org/, 2023.

“ANY.RUN: Interactive Malware Analysis Service,” https://any.
run/, 2023.

[15]

[16]

(17]

[18]

[19]

[20]

[21]

R. Raducu, A. Villagrasa-Labrador, R.]. Rodriguez, and P. Alvarez,
“MALVADA: A framework for generating datasets of malware
execution traces,” SoftwareX, vol. 30, p. 102082, 2025. DOI: https:
//doi.org/10.1016/j.softx.2025.102082.

“WIinMET: Windows Malware Execution Traces Dataset,” Zenodo,
2024. DOL https:/ /doi.org/10.5281/zenodo.12647555.

J. Schwartz and H. Kurniawati, “Autonomous penetration testing
using reinforcement learning,” arXiv preprint arXiv:1905.05965,
2019.

T. T. Nguyen and V. J. Reddi, “Deep reinforcement learning for
cyber security,” IEEE Transactions on Neural Networks and Learning
Systems, 2019.

H. S. Anderson, A. Kharkar, B. Filar, and P. Roth, “Evading
machine learning malware detection,” Black Hat USA, 2017.

R. Jordaney, K. Sharad, S. K. Dash, Z. Wang, D. Papini, I. Nouretdi-
nov, and L. Cavallaro, “Transcend: Detecting concept drift in mal-
ware classification models,” in 26th USENIX Security Symposium,
pp. 625-642, 2017.

R. Sommer and V. Paxson, “Outside the closed world: On using
machine learning for network intrusion detection,” in IEEE Sym-
posium on Security and Privacy, pp. 305-316, 2010.

12

